CS 134

Physics

Game Engine Architecture
Chapter 12.1 —12.3

Today in Video Games

Want to run Vulkan on
1OS and macQOS?

MoltenVK

Move to the next-generation, cross-platform, Vulkan graphics APl on /0S5 and macOS. Build portable graphics
applications and games using the modern, industry-standard Vulkan graphics API, and seamlessly run your
application or game across many industry platforms, including /0S and macOS.

Vulkanis the graphics industry's new standard for predictable, high-performance graphics, providing you with
unprecedented control of your graphics and compute pipelines. Vulkanis an open standard, developed by the
Khronos Group, an industry consortium dedicated to the creation of open standards for the graphics industry.
Vulkan is supported by a large number of major industry participants, including hardware vendors, driver
implementers, and tool vendors, across many hardware and operating system platforms.

Median 110% 112% 109%
Std. Deviation 2% 38% 40%
100% percentile 10% 19% 41%

= So far, we have three classes:

= Background

= 2D array of tiles
= Sprites

= Position, animation frame
= Camera

= Position

= So far, we have three classes:

= Background

= 2D array of tiles, shape
= Sprites

= Position, velocity, animation frame, shape
= Camera

= Position, shape

= For shapes to make sense, you must make
sure all the values you have have geometric
meaning.

Physics

+

iS85 LU E==
- = A=

75

&
iy +

EMNCOUNTERED Ak, FSSA | LANT .

EE ATTITUDE FOR GRIMNS. . .

1 DOT PRODUCT .
= SEFARATING AXIS
3:BE FEHA I MG

= \Want to run at a fixed framerate

= Faster than graphics
= Often between 50fps and 200fps

= Handles Motion, Collision detection, collision
resolution

= Motion: Moving objects by their velocity
= Collision Detection: Detecting overlaps
= Collision Resolution: Handling overlaps

I/l Physics runs at 100fps, or 10ms / physics frame
int physicsDeltaMs = 10;
int lastPhysicsFrameMs;

/l The game loop
while ('shouldExit) {
I ...

// Physics update
do {
/[1. Physics movement
/Il 2. Physics collision detection
/I 3. Physics collision resolution
lastPhysicsFrameMs += physicsDeltaMs;
} while (lastPhysicsFrameMs + physicsDeltaMs < curFrameMs);

// Normal update logic
...

Physics — Motion

= Most objects do not
get moved here,
simulation heavy
objects only

= Vehicles: Cars,
spaceships, etc

= Physics objects:
Things with springs,
mass, etc.

Physics — Motion

= Each object must have a velocity and mass in
its state

= The "normal” tick() just sets its velocity.

= During physics tick, the object moves based on
its velocity

= During physics collision resolution, resolve
collisions based on physics equations

= F=ma
= Conservation of momentum

Physics — Collision Detection

= Remember the three slowest things?
= Graphics, Physics, Al

= All objects can collide with all other objects,
collision detection is O(n”2)

= Avoid doing complicated physics collisions, use
simplified collision geometry.

= Note: Does not care about motion. Timesteps
are kept small enough for it to work anyway

Physics — Collision Detection

Physics — Collision Detection

Physics — Collision Detection

= Common basic shapes are:

2D 3D
= Circles Spheres
= AABB Boxes

= Convex Polygon Convex Polyhedron

= Advanced shapes

= Pixel perfect (2D)
= Heightmaps (2D / 3D)

Circle / Circle

= Simplest and quickest

= Two circles intersect iff their centers are closer
than the sum of their radii.

= SQ(c1[0]-c2[0]) + SQ(c1[1]-c2[1]) < SQ(r1+r2)

AABB /| AABB

= Two convex objects do not overlap if there
exists a line onto which the two objects'
projections do not overlap.

= |f two convex polygons do not intersect, then
one of the two polygons' sides is the separating
axis.

= Together, these imply we can search through
all potential separating axes and see if we find
a solution!

AABB /| AABB

= Separating axis must be X-axis or Y-axis

= Check in order:
= |s box1 left of box2?

= |s box1 right of box2?
= |s box1 above box2?

= |s box1 below box2?

= Same check that we did for the cameral

Polygon / Polygon

+

iS85 LU E==
- = A=

75

&
iy +

EMNCOUNTERED Ak, FSSA | LANT .

EE ATTITUDE FOR GRIMNS. . .

1 DOT PRODUCT .
= SEFARATING AXIS
3:BE FEHA I MG

Polygon / Polygon

= Create vectors for e B
Il normai = (Y)

each side, see if all s 5
points of one polygon
are on the “outside” \"'gh*““““’:(iﬂ
half of the world.

i no n4\\ i ;ﬂ“

= These are called
normal vectors

Polygon / Polygon

= |f the last slide didn't convince you, polygon /
polygon collision is SLOW and COMPLICATED

= Avoid it where possible!

= |t is easier and faster to do pixel-perfect
collision detection than polygon collision
detection.

= BONUS:

= This also solves AABB / Polygon, Point / Polygon,
and Circle / Polygon

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

