

CS 134

Physics

Game Engine Architecture
Chapter 12.1 – 12.3

Today in Video Games

Homework

Physics

 So far, we have three classes:
 Background

 2D array of tiles
 Sprites

 Position, animation frame
 Camera

 Position

Physics

 So far, we have three classes:
 Background

 2D array of tiles, shape
 Sprites

 Position, velocity, animation frame, shape
 Camera

 Position, shape

 For shapes to make sense, you must make
sure all the values you have have geometric
meaning.

Physics

Physics

 Want to run at a fixed framerate
 Faster than graphics
 Often between 50fps and 200fps

 Handles Motion, Collision detection, collision
resolution

 Motion: Moving objects by their velocity
 Collision Detection: Detecting overlaps
 Collision Resolution: Handling overlaps

Physics

// Physics runs at 100fps, or 10ms / physics frame
int physicsDeltaMs = 10;
int lastPhysicsFrameMs;

// The game loop
while (!shouldExit) {
 // ...

 // Physics update
 do {
 // 1. Physics movement
 // 2. Physics collision detection
 // 3. Physics collision resolution
 lastPhysicsFrameMs += physicsDeltaMs;
 } while (lastPhysicsFrameMs + physicsDeltaMs < curFrameMs);

 // Normal update logic
 // …
}

Physics – Motion

 Most objects do not
get moved here,
simulation heavy
objects only

 Vehicles: Cars,
spaceships, etc

 Physics objects:
Things with springs,
mass, etc.

Physics – Motion

 Each object must have a velocity and mass in
its state

 The “normal” tick() just sets its velocity.

 During physics tick, the object moves based on
its velocity

 During physics collision resolution, resolve
collisions based on physics equations

 F=ma
 Conservation of momentum

Physics – Collision Detection

 Remember the three slowest things?
 Graphics, Physics, AI

 All objects can collide with all other objects,
collision detection is O(n^2)

 Avoid doing complicated physics collisions, use
simplified collision geometry.

 Note: Does not care about motion. Timesteps
are kept small enough for it to work anyway

Physics – Collision Detection

Physics – Collision Detection

Physics – Collision Detection

 Common basic shapes are:

2D 3D
 Circles Spheres
 AABB Boxes
 Convex Polygon Convex Polyhedron

 Advanced shapes
 Pixel perfect (2D)
 Heightmaps (2D / 3D)

Circle / Circle

 Simplest and quickest

 Two circles intersect iff their centers are closer
than the sum of their radii.

 SQ(c1[0]-c2[0]) + SQ(c1[1]-c2[1]) < SQ(r1+r2)

AABB / AABB

 Two convex objects do not overlap if there
exists a line onto which the two objects'
projections do not overlap.

 If two convex polygons do not intersect, then
one of the two polygons' sides is the separating
axis.

 Together, these imply we can search through
all potential separating axes and see if we find
a solution!

AABB / AABB

 Separating axis must be X-axis or Y-axis
 Check in order:

 Is box1 left of box2?
 Is box1 right of box2?
 Is box1 above box2?
 Is box1 below box2?

 Same check that we did for the camera!

Polygon / Polygon

Polygon / Polygon

 Create vectors for
each side, see if all
points of one polygon
are on the “outside”
half of the world.

 These are called
normal vectors

Polygon / Polygon

 If the last slide didn't convince you, polygon /
polygon collision is SLOW and COMPLICATED

 Avoid it where possible!
 It is easier and faster to do pixel-perfect

collision detection than polygon collision
detection.

 BONUS:
 This also solves AABB / Polygon, Point / Polygon,

and Circle / Polygon

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

