

CS 134

Physics

Game Engine Architecture
Chapter 12.1 – 12.3

Today in Video Games

Homework

Physics

 So far, we have three classes:
 Background

 2D array of tiles
 Sprites

 Position, animation frame
 Camera

 Position

Physics

 So far, we have three classes:
 Background

 2D array of tiles, shape
 Sprites

 Position, velocity, animation frame, shape
 Camera

 Position, shape

 For shapes to make sense, you must make
sure all the values you have have geometric
meaning.

Physics

Physics

 Want to run at a fixed framerate
 Faster than graphics
 Often between 50fps and 200fps

 Handles Motion, Collision detection, collision
resolution

 Motion: Moving objects by their velocity
 Collision Detection: Detecting overlaps
 Collision Resolution: Handling overlaps

Physics

// Physics runs at 100fps, or 10ms / physics frame
int physicsDeltaMs = 10;
int lastPhysicsFrameMs;

// The game loop
while (!shouldExit) {
 // ...

 // Physics update
 do {
 // 1. Physics movement
 // 2. Physics collision detection
 // 3. Physics collision resolution
 lastPhysicsFrameMs += physicsDeltaMs;
 } while (lastPhysicsFrameMs + physicsDeltaMs < curFrameMs);

 // Normal update logic
 // …
}

Physics – Motion

 Most objects do not
get moved here,
simulation heavy
objects only

 Vehicles: Cars,
spaceships, etc

 Physics objects:
Things with springs,
mass, etc.

Physics – Motion

 Each object must have a velocity and mass in
its state

 The “normal” tick() just sets its velocity.

 During physics tick, the object moves based on
its velocity

 During physics collision resolution, resolve
collisions based on physics equations

 F=ma
 Conservation of momentum

Physics – Collision Detection

 Remember the three slowest things?
 Graphics, Physics, AI

 All objects can collide with all other objects,
collision detection is O(n^2)

 Avoid doing complicated physics collisions, use
simplified collision geometry.

 Note: Does not care about motion. Timesteps
are kept small enough for it to work anyway

Physics – Collision Detection

Physics – Collision Detection

Physics – Collision Detection

 Common basic shapes are:

2D 3D
 Circles Spheres
 AABB Boxes
 Convex Polygon Convex Polyhedron

 Advanced shapes
 Pixel perfect (2D)
 Heightmaps (2D / 3D)

Circle / Circle

 Simplest and quickest

 Two circles intersect iff their centers are closer
than the sum of their radii.

 SQ(c1[0]-c2[0]) + SQ(c1[1]-c2[1]) < SQ(r1+r2)

AABB / AABB

 Two convex objects do not overlap if there
exists a line onto which the two objects'
projections do not overlap.

 If two convex polygons do not intersect, then
one of the two polygons' sides is the separating
axis.

 Together, these imply we can search through
all potential separating axes and see if we find
a solution!

AABB / AABB

 Separating axis must be X-axis or Y-axis
 Check in order:

 Is box1 left of box2?
 Is box1 right of box2?
 Is box1 above box2?
 Is box1 below box2?

 Same check that we did for the camera!

Polygon / Polygon

Polygon / Polygon

 Create vectors for
each side, see if all
points of one polygon
are on the “outside”
half of the world.

 These are called
normal vectors

Polygon / Polygon

 If the last slide didn't convince you, polygon /
polygon collision is SLOW and COMPLICATED

 Avoid it where possible!
 It is easier and faster to do pixel-perfect

collision detection than polygon collision
detection.

 BONUS:
 This also solves AABB / Polygon, Point / Polygon,

and Circle / Polygon

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

