

CS 134

2DXX Graphics Optimizations

Today in Video Games

Next class thoughts...

How many people can bring
a laptop to next class?

Homework 3

 Controllable camera
 Camera must not be allowed to exit the world.

 Camera being controlled manually is fine.

Homework

 Many options for extra credit:
 Do an isometric or hexgrid view
 Add intelligent camera controls (character must not

be always centered!)
 Research on “camera controls with dead zone”

Optimization Mentality

 What makes Quicksort so fast anyway?

 If you tried to come up with a sorting algorithm,
you would probably start with Selection Sort

 Selection Sort O(n^2)
 Quicksort O(n log n)

Optimization Mentality

 Selection Sort algorithm:
 Look at each element of your array to find the

minimal element.
 Put the minimal element at the end of the sorted

array
 Repeat

 4 8 5 6 7 2 1 3 9 0

Optimization Mentality

 Quicksort takes advantage of the transitive
property of comparisons

 This extra insight is what makes quicksort fast

 Big-O notation is a measuring tool, NOT what
makes the code fast.

Optimization Strategies

 Automated compiler optimizations
 Generate better code!
 Easy as flipping a switch

 Take better advantage of the hardware
 The memory cache!
 Data in native formats for GPU

 Reduce the amount of work done
 Organize your data in cells / trees
 Use geometric knowledge about your data

Optimizations

 What is the speed of drawing a game so far?
 (d+a) * s + d*b Roughly O(n)

 Even though O(n) is good, drawing can be so
slow that we want to dramatically reduce it!

 Be wary of anything that has to run every frame

Drawing Optimization #1

Release Mode
(Automated complier optimization)

Drawing Optimization #1

 Have the compiler generate better code for you.

 On Visual Studio you use “Release Mode”
 On GCC (Mac and Linux) -O2 or -O3

Drawing Optimization #1

Drawing Optimization #1

 Visual Studio's Release Mode has its own set of
configurations

 GCC -O3 contains optimizations that break
under common buggy code.

 -O2 is “safer”

 If you encounter bugs with optimizations turned
on, it will be much harder to use a debugger

 Assembly knowledge helps a lot here!

Drawing Optimization #2

Don't Draw Offscreen Sprites
(Take better advantage of hardware)

Drawing Optimization #2

 Current implementation sends all sprites and
background tiles to the graphics card

 Currently about 20,000 background tiles; 500
sprites

 Overhead from command based architecture
 Every command takes memory
 Every command uses the data bus CPU ↔ GPU

 On CPU, check if sprite is offscreen, if so, don't
generate a command

Drawing Optimization #2

 Sprites, camera are
both Axis-Aligned
Bounding Box

 AABB/AABB test
 If they don't intersect,

then one box must be
above, below, to the
left, or to the right of
the other box

Drawing Optimization #2

struct AABB {
 int x, y, w, h;
};

boolean AABBIntersect(AABB box1, AABB box2)
{
 // box1 to the right
 if (box1.x > box2.x + box2.w) {
 return false;
 }
 // box1 to the left
 if (box1.x + box1.w < box2.x) {
 return false;
 }
 // box1 below
 if (box1.y > box2.y + box2.h) {
 return false;
 }
 // box1 above
 if (box1.y + box1.h < box2.y) {
 return false;
 }
 return true;
}

Drawing Optimization #2

 Do AABB test BEFORE each draw

 if (AABBIntersect(camera, sprite))
 DrawSprite(sprite)

 else
 // Do Nothing

Drawing Optimization #3

Don't Process Backgrounds Offscreen At All
(Avoid doing unnecessary work)

Drawing Optimization #3

 We are still spending CPU time on every single
background tile (all 20,000 or more)

 If we knew where to start and stop, we could
avoid even looking at 90% of the tiles

 This does not need to be 100% accurate, it just
needs to have no false negatives

Drawing Optimization #3

Drawing Optimization #3

 For grids:
 tile_x = floor(camera_x / tile_width)
 tile_y = floor(camera_y / tile_height)

 For hex-grids:
 tile_x = floor(camera_x / tile_step)
 tile_y = floor(camera_y / tile_step)
 Bottom right coordinate needs extra offset!

Drawing Optimization #3

Drawing Optimization #4

Do the same thing, for sprites
(Avoid doing unnecessary work)

Drawing Optimization #4

 Unlike backgrounds, sprites move, so the exact
same optimization doesn't work

 Create logical buckets on a grid that the sprites
can move between.

 This is similar to “Bucket Sort”

Drawing Optimization #4

Drawing Optimization #4

 Buckets should be big enough that there are at
least tens of sprites per bucket

 Buckets should be small enough to exclude a
significant percentage of the level

 During an update, you may need to re-
bucketize the sprite

Drawing Optimization #5

Use the modern OpenGL API
(Make better use of the hardware)

Drawing Optimization #5

 The current implementation of DrawSprite()
uses OpenGL “immediate mode”, from the early
90s.

 Extra slow!
 No parallelism
 Lots of extra copies on the CPU ↔ GPU

 There has been a better way since 2003,
Vertex Buffer Objects (and Vertex Arrays in
1997)

Drawing Optimization #5

 You build up a vertex buffer object each frame,
copy it all over at the end, then draw it.

 glBufferData() - copies the data
 Likely with usage=GL_STREAM_DRAW

 glDrawArrays() - draws the verts

 Note: This requires all the sprites drawn in one
call to be in a single texture

Drawing Optimization #5

 Build a texture atlas
 a.k.a. sprite sheet

 Draw subsets of the
images using texture
coords

Summary

 Release Mode
 Don't draw things that are off screen
 Only process background tiles that are on

screen, make background a regular grid if
necessary.

 Only process sprites that are near the screen,
put them into a regular grid.

 Use the modern OpenGL interface.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

