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2DXX Graphics Optimizations



  

Today in Video Games



  



  



  

Next class thoughts...

How many people can bring
a laptop to next class?



  

Homework 3

 Controllable camera
 Camera must not be allowed to exit the world.

 Camera being controlled manually is fine.



  

Homework

 Many options for extra credit:
 Do an isometric or hexgrid view
 Add intelligent camera controls (character must not 

be always centered!)
 Research on “camera controls with dead zone”



  

Optimization Mentality

 What makes Quicksort so fast anyway?

 If you tried to come up with a sorting algorithm, 
you would probably start with Selection Sort

 Selection Sort O(n^2)
 Quicksort O(n log n)



  

Optimization Mentality

 Selection Sort algorithm:
 Look at each element of your array to find the 

minimal element.
 Put the minimal element at the end of the sorted 

array
 Repeat

 4 8 5 6 7 2 1 3 9 0



  

Optimization Mentality

 Quicksort takes advantage of the transitive 
property of comparisons

 This extra insight is what makes quicksort fast

 Big-O notation is a measuring tool, NOT what 
makes the code fast.



  

Optimization Strategies

 Automated compiler optimizations
 Generate better code!
 Easy as flipping a switch

 Take better advantage of the hardware
 The memory cache!
 Data in native formats for GPU

 Reduce the amount of work done
 Organize your data in cells / trees
 Use geometric knowledge about your data



  

Optimizations

 What is the speed of drawing a game so far?
 (d+a) * s + d*b Roughly O(n)

 Even though O(n) is good, drawing can be so 
slow that we want to dramatically reduce it!

 Be wary of anything that has to run every frame



  

Drawing Optimization #1

Release Mode
(Automated complier optimization)



  

Drawing Optimization #1

 Have the compiler generate better code for you.

 On Visual Studio you use “Release Mode”
 On GCC (Mac and Linux) -O2 or -O3



  

Drawing Optimization #1



  

Drawing Optimization #1

 Visual Studio's Release Mode has its own set of 
configurations

 GCC -O3 contains optimizations that break 
under common buggy code.

 -O2 is “safer”

 If you encounter bugs with optimizations turned 
on, it will be much harder to use a debugger

 Assembly knowledge helps a lot here!



  

Drawing Optimization #2

Don't Draw Offscreen Sprites
(Take better advantage of hardware)



  

Drawing Optimization #2

 Current implementation sends all sprites and 
background tiles to the graphics card

 Currently about 20,000 background tiles; 500 
sprites

 Overhead from command based architecture
 Every command takes memory 
 Every command uses the data bus CPU ↔ GPU

 On CPU, check if sprite is offscreen, if so, don't 
generate a command



  

Drawing Optimization #2

 Sprites, camera are 
both Axis-Aligned 
Bounding Box

 AABB/AABB test
 If they don't intersect, 

then one box must be 
above, below, to the 
left, or to the right of 
the other box



  

Drawing Optimization #2

struct AABB {
    int x, y, w, h;
};

boolean AABBIntersect(AABB box1, AABB box2)
{
    // box1 to the right
    if (box1.x > box2.x + box2.w) {
        return false;
    }
    // box1 to the left
    if (box1.x + box1.w < box2.x) {
        return false;
    }
    // box1 below
    if (box1.y > box2.y + box2.h) {
        return false;
    }
    // box1 above
    if (box1.y + box1.h < box2.y) {
        return false;
    }
    return true;
}



  

Drawing Optimization #2

 Do AABB test BEFORE each draw

 if (AABBIntersect(camera, sprite)) 
 DrawSprite(sprite)

 else
 // Do Nothing



  

Drawing Optimization #3

Don't Process Backgrounds Offscreen At All
(Avoid doing unnecessary work)



  

Drawing Optimization #3

 We are still spending CPU time on every single 
background tile (all 20,000 or more)

 If we knew where to start and stop, we could 
avoid even looking at 90% of the tiles

 This does not need to be 100% accurate, it just 
needs to have no false negatives



  

Drawing Optimization #3



  

Drawing Optimization #3

 For grids:
 tile_x = floor(camera_x / tile_width)
 tile_y = floor(camera_y / tile_height)

 For hex-grids:
 tile_x = floor(camera_x / tile_step)
 tile_y = floor(camera_y / tile_step)
 Bottom right coordinate needs extra offset!



  

Drawing Optimization #3



  

Drawing Optimization #4

Do the same thing, for sprites
(Avoid doing unnecessary work)



  

Drawing Optimization #4

 Unlike backgrounds, sprites move, so the exact 
same optimization doesn't work

 Create logical buckets on a grid that the sprites 
can move between.

 This is similar to “Bucket Sort”



  

Drawing Optimization #4



  

Drawing Optimization #4

 Buckets should be big enough that there are at 
least tens of sprites per bucket

 Buckets should be small enough to exclude a 
significant percentage of the level

 During an update, you may need to re-
bucketize the sprite



  

Drawing Optimization #5

Use the modern OpenGL API
(Make better use of the hardware)



  

Drawing Optimization #5

 The current implementation of DrawSprite() 
uses OpenGL “immediate mode”, from the early 
90s.

 Extra slow!
 No parallelism
 Lots of extra copies on the CPU ↔ GPU

 There has been a better way since 2003, 
Vertex Buffer Objects (and Vertex Arrays in 
1997)



  

Drawing Optimization #5

 You build up a vertex buffer object each frame, 
copy it all over at the end, then draw it.

 glBufferData() - copies the data
 Likely with usage=GL_STREAM_DRAW

 glDrawArrays() - draws the verts

 Note: This requires all the sprites drawn in one 
call to be in a single texture



  

Drawing Optimization #5

 Build a texture atlas
 a.k.a. sprite sheet

 Draw subsets of the 
images using texture 
coords



  

Summary

 Release Mode
 Don't draw things that are off screen
 Only process background tiles that are on 

screen, make background a regular grid if 
necessary.

 Only process sprites that are near the screen, 
put them into a regular grid.

 Use the modern OpenGL interface.
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