

CS 134

More Graphics

Homework

Almost everyone did the extra credit.
If the average grade gets above 100...

Homework

 Here’s a common mistake from homework 1.
Can you find the bug?

if(kbState[KeyEvent.VK_W]) {
 if(spritePos[1] > 0) {
 spritePos[1] = spritePos[1] - 5;
 } else {
 spritePos[1] = 0;
 }
}

Homework

 Here’s a common mistake from homework 1.
Can you find the bug?

if(kbState[KeyEvent.VK_W]) {
 if(spritePos[1] > 0) { // what happens if spritePos[1] == 3?
 spritePos[1] = spritePos[1] - 5;
 } else {
 spritePos[1] = 0;
 }
}

Homework

 Better version

if(kbState[KeyEvent.VK_W]) {
 spritePos[1] = spritePos[1] - 5;

 if(spritePos[1] < 0) {
 spritePos[1] = 0;
 }
}

Homework

Questions on homework 2?

Level Representation

 Data / Defs
 Split up actor information into changing (Data),

unchanging shared (Defs). Share Defs among all
actors.

 Level data is Defs and per-actor data.

 Prototype based
 Combine Data and Defs. Let both change.
 Level data is Prototype and per-actor data.

Data / Defs

class AnimationDef {
 String name;
 FrameDef[] frames;
}

class FrameDef {
 int image;
 float frameTimeSecs;
}

class AnimationData {
 AnimationDef def;
 int curFrame;
 float secsUntilNextFrame;

 void update(float deltaTime);
 void draw(int x, int y);
}

Data / Defs

class AnimationDef {
 String name;
 FrameDef[] frames;
}

class FrameDef {
 int image;
 float frameTimeSecs;
}

class AnimationData {
 AnimationDef def;
 int curFrame;
 float secsUntilNextFrame;

 void update(float deltaTime);
 void draw(int x, int y);
}

struct CharacterDef {
 String name;
 String walkAnimDef;
 String attackAnimDef;
}

class CharacterData {
 float x;
 float y;
 float health;
 bool isWalking;
 AnimationData curAnimation;

 void update(float deltaTime);
 void draw();
}

Data / Defs

class AnimationDef {
 String name;
 FrameDef[] frames;
}

class FrameDef {
 int image;
 float frameTimeSecs;
}

class AnimationData {
 AnimationDef def;
 int curFrame;
 float secsUntilNextFrame;

 void update(float deltaTime);
 void draw(int x, int y);
}

struct CharacterDef {
 String name;
 String walkAnimDef;
 String attackAnimDef;
}

class CharacterData {
 float x;
 float y;
 float health;
 bool isWalking;
 AnimationData curAnimation;

 void update(float deltaTime);
 void draw();
}

class LevelCharacterDef {
 String actor;
 float intialX;
 float initialY;
 float initialHealth;
}

Data / Defs

 Advantage:
 All Defs only exist once
 Easy to understand and reason about what data

changes and doesn't change
 Avoids having ”bad to customize” fields be

customizable
 Disadvantage:

 What can be customized is controlled by code

Prototype Based

 Rarely is EVERY system prototype based, it
doesn't make much sense

 What would a prototype for Animation be?
 Choose key classes and make them prototype

based

Prototype Based

class AnimationDef {
 String name;
 FrameDef[] frames;
}

class FrameDef {
 int image;
 float frameTimeSecs;
}

class AnimationData {
 AnimationDef def;
 int curFrame;
 float secsUntilNextFrame;
}

struct CharacterDef {
 String name;
 String walkAnimDef;
 String attackAnimDef;
}

class CharacterData {
 float x;
 float y;
 float health;
 bool isWalking;
 AnimationData curAnimation;
}

// No need for this, just store
// CharacterData in your level directly!
class LevelCharacterDef {
 String actor;
 float intialX;
 float initialY;
 float initialHealth;
}

Prototype Based

 Advantage:
 Full flexibility, every single field can be customized
 Less classes to deal with

 Disadvantage:
 Full flexibility, every single field can be customized,

including ones that could get out of sync
 Less data sharing can go on

Prototype Based

Questions?

Summary

 Backgrounds are easy
 Simple for loop!
 Can have multiple backgrounds to have stuff in

front of and behind sprites.
 Sprites are a bit harder

 They have state!
 But ultimately, you have a list of sprites and you call

update() and draw() on each of them.

The Game Loop So Far

while (!shouldExit) {
 System.arraycopy(kbState, 0, kbPrevState, 0, kbState.length);

 // Actually, this runs the entire OS message pump.
 window.display();
 if (!window.isVisible()) {
 shouldExit = true;
 break;
 }

 // Check keyboard input for player
 // Update positions and animations of all sprites

 gl.glClearColor(0, 0, 0, 1);
 gl.glClear(GL2.GL_COLOR_BUFFER_BIT);

 // Draw background(s)
 // Draw sprites
 // Draw more background(s)

 // Present to the player.
 window.swapBuffers();
}

Scrolling

 All sprites AND the camera should have their
position stored in world space.

 All drawing commands take pixel space values.

 When scrolling, you UPDATE the camera's
world space position so that you CALCULATE
the sprites' pixel space position.

Scrolling

Really, the camera is in the world!

Scrolling

 Think of the camera
as being positioned in
the world as well

 class Camera {
 public int x;
 public int y;
}

Scrolling

 Given a camera c,
and a sprite s, where
do you draw the
sprite?

 c.x, c.y
 s.x, s.y

Scrolling

 Given a camera c,
and a sprite s, where
do you draw the
sprite?

 c.x, c.y
 s.x, s.y

 s.x - c.x
 s.y - c.y

Scrolling

 Other features to think about with cameras:

 Prevent the camera from leaving the world
 Calculate the camera's position based on the

player's position

 Which of the two must win?

Timing & Scrolling

Questions?

Backgrounds++

 Side/Top down
 Isometric
 Hex grid

 3/4ths View

Side/Top Down

Side/Top Down

 Level is 2D array

 Tile position:
 x*w
 y*h

3/4ths View

3/4ths View

 No change from
normal rendering

 Draw top to bottom, to
follow the Painter's
Algorithm

 If you have height,
you must make sure
top to bottom follows
floor position.

3/4ths View

 Known info:
 tileW
 tileH
 imageW
 imageH

 Tile position:
 x * tileW
 y * tileH

Isometric

Isometric

 Level is still 2D array
of indexes

 Tile position:
 (x+y) * half_w
 (-1-x+y) * half_h

Hex Grid

Hex Grid

 Still 2D array of
indexes

 Tile position:
 x*w

(if y is even)
 (x+0.5)*w

(if y is odd)
 y*ystep

Backgrounds++

Defs are still always a 2D array

Questions?

Parallax Scrolling

 Let's look at a video

Parallax Scrolling

 Simple parallax
 Farther away things

appear smaller, move
slower

 Can have multiple
layers

Parallax Scrolling

 Consider having multiple layers
 For example

 BG1: offset by ???
 BG2: offset by ???

 You can also have
 FG2: offset by ???

Parallax Scrolling

 Consider having multiple layers
 For example

 BG1: offset by camX/2, camY/2
 BG2: offset by camX/4, camY/4

 You can also have
 FG2: offset by camX*1.5, camY*1.5

Parallax Scrolling

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

