
  

CS 134

More Graphics



  

Homework

Almost everyone did the extra credit.
If the average grade gets above 100...



  

Homework

 Here’s a common mistake from homework 1. 
Can you find the bug?

if(kbState[KeyEvent.VK_W]) {
    if(spritePos[1] > 0) {
        spritePos[1] = spritePos[1] - 5;
    } else {
        spritePos[1] = 0;
    }
}



  

Homework

 Here’s a common mistake from homework 1. 
Can you find the bug?

if(kbState[KeyEvent.VK_W]) {
    if(spritePos[1] > 0) {   // what happens if spritePos[1] == 3?
        spritePos[1] = spritePos[1] - 5;
    } else {
        spritePos[1] = 0;
    }
}



  

Homework

 Better version

if(kbState[KeyEvent.VK_W]) {
    spritePos[1] = spritePos[1] - 5;

    if(spritePos[1] < 0) {
        spritePos[1] = 0;
    }
}



  

Homework

Questions on homework 2?



  

Level Representation

 Data / Defs
 Split up actor information into changing (Data), 

unchanging shared (Defs).  Share Defs among all 
actors.

 Level data is Defs and per-actor data.

 Prototype based
 Combine Data and Defs. Let both change.
 Level data is Prototype and per-actor data.



  

Data / Defs

class AnimationDef {
    String name;
    FrameDef[] frames;
}

class FrameDef {
    int image;
    float frameTimeSecs;
}

class AnimationData {
    AnimationDef def;
    int curFrame;
    float secsUntilNextFrame;

    void update(float deltaTime);
    void draw(int x, int y);
}



  

Data / Defs

class AnimationDef {
    String name;
    FrameDef[] frames;
}

class FrameDef {
    int image;
    float frameTimeSecs;
}

class AnimationData {
    AnimationDef def;
    int curFrame;
    float secsUntilNextFrame;

    void update(float deltaTime);
    void draw(int x, int y);
}

struct CharacterDef {
    String name;
    String walkAnimDef;
    String attackAnimDef;
}

class CharacterData {
    float x;
    float y;
    float health;
    bool isWalking;
    AnimationData curAnimation;

    void update(float deltaTime);
    void draw();
}



  

Data / Defs

class AnimationDef {
    String name;
    FrameDef[] frames;
}

class FrameDef {
    int image;
    float frameTimeSecs;
}

class AnimationData {
    AnimationDef def;
    int curFrame;
    float secsUntilNextFrame;

    void update(float deltaTime);
    void draw(int x, int y);
}

struct CharacterDef {
    String name;
    String walkAnimDef;
    String attackAnimDef;
}

class CharacterData {
    float x;
    float y;
    float health;
    bool isWalking;
    AnimationData curAnimation;

    void update(float deltaTime);
    void draw();
}

class LevelCharacterDef {
    String actor;
    float intialX;
    float initialY;
    float initialHealth;
}



  

Data / Defs

 Advantage:
 All Defs only exist once
 Easy to understand and reason about what data 

changes and doesn't change
 Avoids having ”bad to customize” fields be 

customizable
 Disadvantage:

 What can be customized is controlled by code



  

Prototype Based

 Rarely is EVERY system prototype based, it 
doesn't make much sense

 What would a prototype for Animation be?
 Choose key classes and make them prototype 

based



  

Prototype Based

class AnimationDef {
    String name;
    FrameDef[] frames;
}

class FrameDef {
    int image;
    float frameTimeSecs;
}

class AnimationData {
    AnimationDef def;
    int curFrame;
    float secsUntilNextFrame;
}

struct CharacterDef {
    String name;
    String walkAnimDef;
    String attackAnimDef;
}

class CharacterData {
    float x;
    float y;
    float health;
    bool isWalking;
    AnimationData curAnimation;
}

// No need for this, just store
// CharacterData in your level directly!
class LevelCharacterDef {
    String actor;
    float intialX;
    float initialY;
    float initialHealth;
}



  

Prototype Based

 Advantage:
 Full flexibility, every single field can be customized
 Less classes to deal with

 Disadvantage:
 Full flexibility, every single field can be customized, 

including ones that could get out of sync
 Less data sharing can go on



  

Prototype Based

Questions?



  

Summary

 Backgrounds are easy
 Simple for loop!
 Can have multiple backgrounds to have stuff in 

front of and behind sprites.
 Sprites are a bit harder

 They have state!
 But ultimately, you have a list of sprites and you call 

update() and draw() on each of them.



  

The Game Loop So Far

while (!shouldExit) {
    System.arraycopy(kbState, 0, kbPrevState, 0, kbState.length);

    // Actually, this runs the entire OS message pump.
    window.display();
    if (!window.isVisible()) {
        shouldExit = true;
        break;
    }

    // Check keyboard input for player
    // Update positions and animations of all sprites

    gl.glClearColor(0, 0, 0, 1);
    gl.glClear(GL2.GL_COLOR_BUFFER_BIT);

    // Draw background(s)
    // Draw sprites
    // Draw more background(s)

    // Present to the player.
    window.swapBuffers();
}



  

Scrolling

 All sprites AND the camera should have their 
position stored in world space.

 All drawing commands take pixel space values.

 When scrolling, you UPDATE the camera's 
world space position so that you CALCULATE 
the sprites' pixel space position.



  

Scrolling

Really, the camera is in the world!



  

Scrolling

 Think of the camera 
as being positioned in 
the world as well

 class Camera {
    public int x;
    public int y;
}



  

Scrolling

 Given a camera c, 
and a sprite s, where 
do you draw the 
sprite?

 c.x, c.y
 s.x, s.y



  

Scrolling

 Given a camera c, 
and a sprite s, where 
do you draw the 
sprite?

 c.x, c.y
 s.x, s.y

 s.x - c.x
 s.y - c.y



  

Scrolling

 Other features to think about with cameras:

 Prevent the camera from leaving the world
 Calculate the camera's position based on the 

player's position

 Which of the two must win?



  

Timing & Scrolling

Questions?



  

Backgrounds++

 Side/Top down
 Isometric
 Hex grid

 3/4ths View



  

Side/Top Down



  

Side/Top Down

 Level is 2D array

 Tile position:
 x*w
 y*h



  

3/4ths View



  

3/4ths View

 No change from 
normal rendering

 Draw top to bottom, to 
follow the Painter's 
Algorithm

 If you have height, 
you must make sure 
top to bottom follows 
floor position.



  

3/4ths View

 Known info:
 tileW
 tileH
 imageW
 imageH

 Tile position:
 x * tileW
 y * tileH



  

Isometric



  

Isometric

 Level is still 2D array 
of indexes

 Tile position:
 (x+y) * half_w
 (-1-x+y) * half_h



  

Hex Grid



  

Hex Grid

 Still 2D array of 
indexes

 Tile position:
 x*w

(if y is even)
 (x+0.5)*w

(if y is odd)
 y*ystep



  

Backgrounds++

Defs are still always a 2D array

Questions?



  

Parallax Scrolling

 Let's look at a video



  

Parallax Scrolling

 Simple parallax
 Farther away things 

appear smaller, move 
slower

 Can have multiple 
layers



  

Parallax Scrolling

 Consider having multiple layers
 For example

 BG1: offset by ???
 BG2: offset by ???

 You can also have
 FG2: offset by ???



  

Parallax Scrolling

 Consider having multiple layers
 For example

 BG1: offset by camX/2, camY/2
 BG2: offset by camX/4, camY/4

 You can also have
 FG2: offset by camX*1.5, camY*1.5



  

Parallax Scrolling

Questions?
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