
  

CS 134

Frame Update, Level
Representation & Graphics



  

Homework 1

Due tonight!

Any questions?



  

Timing

 A common problem I’ve seen is that on SOME 
computers, the player moves slowly and on 
other computers, the player moves fast.

// In game logic update:

spritePos[0] += 2;



  

Timing

        // The game loop
        long lastFrameNS;
        long curFrameNS = System.nanoTime();
        while (!shouldExit) {
            System.arraycopy(kbState, 0, kbPrevState, 0, kbState.length);
            lastFrameNS = curFrameNS;
            curFrameNS = System.nanoTime();
            long deltaTimeMS = (curFrameNS - lastFrameNS) / 1000000;

            // Actually, this runs the entire OS message pump.
            window.display();
            
            if (!window.isVisible()) {
                shouldExit = true;
                break;
            }

            // How often is this called?
            spritePos[0] += 2;

            gl.glClearColor(0, 0, 0, 1);
            gl.glClear(GL2.GL_COLOR_BUFFER_BIT);

            glDrawSprite(spriteTex, spritePos[0], spritePos[1], spriteSize[0], spriteSize[1]);
        }



  

Timing

 Remember, the game loop is limited by 
graphics, so different computers will go through 
the loop at different speeds.

 Graphics prowess
 Vsync

 We need to make sure the sprite moves at a 
constant pixels / sec

 We wanted 2 pixels at 60 fps, so 120 pixels / sec
 Pixels/sec * sec/frame = pixels/frame 



  

Timing

 System.nanoTime()
 Returns time as a nanosecond count
 Subtract the value since the last frame to figure out 

how much time has passed since the last frame
 Needs to be consistent across entire frame.

 Historically, games measure time in milliseconds, 
so I am used to converting nanoseconds to 
milliseconds

 ms = ns / 1,000,000



  

Timing

long lastFrameNS;
long curFrameNS = System.nanoTime();

while (!shouldExit) {
    System.arraycopy(kbState, 0, kbPrevState, 0, kbState.length);
    lastFrameNS = curFrameNS;

    // Actually, this runs the entire OS message pump.
    window.display();
    if (!window.isVisible()) {
        shouldExit = true;
        break;
    }

    currentFrameNS = System.nanoTime();
    int deltaTimeMS = (currentFrameNS - lastFrameNS) / 1000000;

    // Check keyboard input for player
    // Update positions and animations of all sprites

    gl.glClearColor(0, 0, 0, 1);
    gl.glClear(GL2.GL_COLOR_BUFFER_BIT);

    // Draw background(s)
    // Draw sprites
    // Draw more background(s)

    // Present to the player.
    window.swapBuffers();
}



  

Timing

 For C, use SDL_GetTicks()
 Returns time in milliseconds instead of 

nanoseconds.
 Otherwise, identical.



  

2D Drawing

 Look at any 
Super Nintendo 
era game.

 Lots of cool 
graphical effects

 How did they 
make these 
worlds and draw 
them?



  

2D Drawing

 Static ”backgrounds”
 Animated ”sprites”
 Overlayed HUD info

 No matter what, everything can be built off out 
of our single glDrawSprite function



  

2D Drawing



  

History

 Naive Implementation
 Apple II (1977)

 One giant array
 Each pixel is a byte



  

History

 Scroll BG w/ Sprites
 NES (1985)

 Separate layers
 BG, Sprite

 BG space is bigger 
than one screen



  

History

 Command Based
 PlayStation (1995)

 Redraw everything 
every frame

 Huge array of draw 
commands



  

Painter's Algorithm

 Still using Command Based 
hardware today.

 For us, there's just one 
command – draw sprite

 Everything is completely 
redrawn every frame.

 Need to make sure you 
draw things in the right 
order.



  

Painter's Algorithm

 Let's break this 
up into drawing 
order...



  

Backgrounds

 You might want to have a texture for whole 
background.

 This won't work.



  

Backgrounds

 Problems
 GL_MAX_TEXTURE_SIZE

 glGetIntegerv( GL_MAX_TEXTURE_SIZE, &val );
 Often 8196 or higher on PC, 2048 on mobile

 Art Time
 Big textures take a lot of time to make
 You need an artist to draw every single level

 Solution: Tiles



  

Backgrounds



  

Backgrounds

 Level is 2D array of 
indexes

 Tile position:
 x*w
 y*h



  

Backgrounds

Can you see the tiles here?



  

Backgrounds

class BackgroundDef {
    int width;
    int height;
    int[] tiles;

    public int getTile(int x, int y) {
        return tiles[y * width + x];
    }
}

 You could write a file loader, but for now just 
define this in code, it's easier!



  

Backgrounds

Questions?



  

Sprites

 Unlike Backgrounds, sprites change what you 
see from frame to frame

 But each animation is unchanging.



  

Sprites

 Idea: have a ”def” for the animation.



  

Sprites

 List of frames
 Each ”frame” has a time and an image

        1                   2                   1                    3                   4                  3
              100ms           100ms         100ms           100ms           100ms



  

Sprites

class AnimationDef {
    public FrameDef[] frames;
}

class FrameDef {
    public int image;
    public float frameTimeSecs;
}



  

Sprites

But wait, the AnimationDef alone is not
enough to draw the current state of Ryu!



  

Sprites

 You also need to know:
 Where in the animation you are
 How much time until the next part of the animation

        1                   2                   1                    3                   4                  3
              100ms           100ms         100ms           100ms           100ms



  

Sprites

class AnimationData {
    AnimationDef def;
    int curFrame;
    float secsUntilNextFrame;

    public void update(float deltaTime);
    public void draw(int x, int y);
}

 Every frame, the AnimationData for Ryu will 
change!



  

Level Representation

 Data / Defs
 Split up actor information into changing (Data), 

unchanging shared (Defs).  Share Defs among all 
actors.

 Level data is Defs and per-actor data.

 Prototype based
 Combine Data and Defs. Let both change.
 Level data is Prototype and per-actor data.



  

Summary

 Backgrounds are easy
 Simple for loop!
 Can have multiple backgrounds to have stuff in 

front of and behind sprites.
 Sprites are a bit harder

 They have state!
 But ultimately, you have a list of sprites and you call 

update() and draw() on each of them.



  

The Game Loop So Far

while (!shouldExit) {
    System.arraycopy(kbState, 0, kbPrevState, 0, kbState.length);

    // Actually, this runs the entire OS message pump.
    window.display();
    if (!window.isVisible()) {
        shouldExit = true;
        break;
    }

    // Check keyboard input for player
    // Update positions and animations of all sprites

    gl.glClearColor(0, 0, 0, 1);
    gl.glClear(GL2.GL_COLOR_BUFFER_BIT);

    // Draw background(s)
    // Draw sprites
    // Draw more background(s)

    // Present to the player.
    window.swapBuffers();
}



  

Next Class



  

Homework

 Simple tiled background
 Controllable animating sprite moving around

 Character must now move ”sensibly” with 
arrows or WASD



  

Homework

 Sites with existing art:
 http://www.spriters-resource.com/
 http://spritedatabase.net/

 Note that sprites are usually all in one file, you 
will have to cut it up into pieces.

http://www.spriters-resource.com/
http://spritedatabase.net/


  

Homework

 Extra credit options:
 Have the character have ”appropriate” animations 

for its motion (idle, move left, move right, etc.)
 Have multiple non-player controlled characters 

move around the world and animate.
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