

CS 134

Frame Update, Level
Representation & Graphics

Homework 1

Due tonight!

Any questions?

Timing

 A common problem I’ve seen is that on SOME
computers, the player moves slowly and on
other computers, the player moves fast.

// In game logic update:

spritePos[0] += 2;

Timing

 // The game loop
 long lastFrameNS;
 long curFrameNS = System.nanoTime();
 while (!shouldExit) {
 System.arraycopy(kbState, 0, kbPrevState, 0, kbState.length);
 lastFrameNS = curFrameNS;
 curFrameNS = System.nanoTime();
 long deltaTimeMS = (curFrameNS - lastFrameNS) / 1000000;

 // Actually, this runs the entire OS message pump.
 window.display();

 if (!window.isVisible()) {
 shouldExit = true;
 break;
 }

 // How often is this called?
 spritePos[0] += 2;

 gl.glClearColor(0, 0, 0, 1);
 gl.glClear(GL2.GL_COLOR_BUFFER_BIT);

 glDrawSprite(spriteTex, spritePos[0], spritePos[1], spriteSize[0], spriteSize[1]);
 }

Timing

 Remember, the game loop is limited by
graphics, so different computers will go through
the loop at different speeds.

 Graphics prowess
 Vsync

 We need to make sure the sprite moves at a
constant pixels / sec

 We wanted 2 pixels at 60 fps, so 120 pixels / sec
 Pixels/sec * sec/frame = pixels/frame

Timing

 System.nanoTime()
 Returns time as a nanosecond count
 Subtract the value since the last frame to figure out

how much time has passed since the last frame
 Needs to be consistent across entire frame.

 Historically, games measure time in milliseconds,
so I am used to converting nanoseconds to
milliseconds

 ms = ns / 1,000,000

Timing

long lastFrameNS;
long curFrameNS = System.nanoTime();

while (!shouldExit) {
 System.arraycopy(kbState, 0, kbPrevState, 0, kbState.length);
 lastFrameNS = curFrameNS;

 // Actually, this runs the entire OS message pump.
 window.display();
 if (!window.isVisible()) {
 shouldExit = true;
 break;
 }

 currentFrameNS = System.nanoTime();
 int deltaTimeMS = (currentFrameNS - lastFrameNS) / 1000000;

 // Check keyboard input for player
 // Update positions and animations of all sprites

 gl.glClearColor(0, 0, 0, 1);
 gl.glClear(GL2.GL_COLOR_BUFFER_BIT);

 // Draw background(s)
 // Draw sprites
 // Draw more background(s)

 // Present to the player.
 window.swapBuffers();
}

Timing

 For C, use SDL_GetTicks()
 Returns time in milliseconds instead of

nanoseconds.
 Otherwise, identical.

2D Drawing

 Look at any
Super Nintendo
era game.

 Lots of cool
graphical effects

 How did they
make these
worlds and draw
them?

2D Drawing

 Static ”backgrounds”
 Animated ”sprites”
 Overlayed HUD info

 No matter what, everything can be built off out
of our single glDrawSprite function

2D Drawing

History

 Naive Implementation
 Apple II (1977)

 One giant array
 Each pixel is a byte

History

 Scroll BG w/ Sprites
 NES (1985)

 Separate layers
 BG, Sprite

 BG space is bigger
than one screen

History

 Command Based
 PlayStation (1995)

 Redraw everything
every frame

 Huge array of draw
commands

Painter's Algorithm

 Still using Command Based
hardware today.

 For us, there's just one
command – draw sprite

 Everything is completely
redrawn every frame.

 Need to make sure you
draw things in the right
order.

Painter's Algorithm

 Let's break this
up into drawing
order...

Backgrounds

 You might want to have a texture for whole
background.

 This won't work.

Backgrounds

 Problems
 GL_MAX_TEXTURE_SIZE

 glGetIntegerv(GL_MAX_TEXTURE_SIZE, &val);
 Often 8196 or higher on PC, 2048 on mobile

 Art Time
 Big textures take a lot of time to make
 You need an artist to draw every single level

 Solution: Tiles

Backgrounds

Backgrounds

 Level is 2D array of
indexes

 Tile position:
 x*w
 y*h

Backgrounds

Can you see the tiles here?

Backgrounds

class BackgroundDef {
 int width;
 int height;
 int[] tiles;

 public int getTile(int x, int y) {
 return tiles[y * width + x];
 }
}

 You could write a file loader, but for now just
define this in code, it's easier!

Backgrounds

Questions?

Sprites

 Unlike Backgrounds, sprites change what you
see from frame to frame

 But each animation is unchanging.

Sprites

 Idea: have a ”def” for the animation.

Sprites

 List of frames
 Each ”frame” has a time and an image

 1 2 1 3 4 3
 100ms 100ms 100ms 100ms 100ms

Sprites

class AnimationDef {
 public FrameDef[] frames;
}

class FrameDef {
 public int image;
 public float frameTimeSecs;
}

Sprites

But wait, the AnimationDef alone is not
enough to draw the current state of Ryu!

Sprites

 You also need to know:
 Where in the animation you are
 How much time until the next part of the animation

 1 2 1 3 4 3
 100ms 100ms 100ms 100ms 100ms

Sprites

class AnimationData {
 AnimationDef def;
 int curFrame;
 float secsUntilNextFrame;

 public void update(float deltaTime);
 public void draw(int x, int y);
}

 Every frame, the AnimationData for Ryu will
change!

Level Representation

 Data / Defs
 Split up actor information into changing (Data),

unchanging shared (Defs). Share Defs among all
actors.

 Level data is Defs and per-actor data.

 Prototype based
 Combine Data and Defs. Let both change.
 Level data is Prototype and per-actor data.

Summary

 Backgrounds are easy
 Simple for loop!
 Can have multiple backgrounds to have stuff in

front of and behind sprites.
 Sprites are a bit harder

 They have state!
 But ultimately, you have a list of sprites and you call

update() and draw() on each of them.

The Game Loop So Far

while (!shouldExit) {
 System.arraycopy(kbState, 0, kbPrevState, 0, kbState.length);

 // Actually, this runs the entire OS message pump.
 window.display();
 if (!window.isVisible()) {
 shouldExit = true;
 break;
 }

 // Check keyboard input for player
 // Update positions and animations of all sprites

 gl.glClearColor(0, 0, 0, 1);
 gl.glClear(GL2.GL_COLOR_BUFFER_BIT);

 // Draw background(s)
 // Draw sprites
 // Draw more background(s)

 // Present to the player.
 window.swapBuffers();
}

Next Class

Homework

 Simple tiled background
 Controllable animating sprite moving around

 Character must now move ”sensibly” with
arrows or WASD

Homework

 Sites with existing art:
 http://www.spriters-resource.com/
 http://spritedatabase.net/

 Note that sprites are usually all in one file, you
will have to cut it up into pieces.

http://www.spriters-resource.com/
http://spritedatabase.net/

Homework

 Extra credit options:
 Have the character have ”appropriate” animations

for its motion (idle, move left, move right, etc.)
 Have multiple non-player controlled characters

move around the world and animate.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

