

CS 134

Generic Serialization

Grade distribution

General Save / Load

 Write code to save / load things is extremely
repetitious

 Write X, Write Y, Write Z

 A computer could write this code, if it knew
what fields were in your struct

 Reflection to the rescue!

Reflection

 Write code about types.

 “What is the type of this object?”
 “What are the fields in this type?”

 And their names, types
 “Create a new object for this type!”

 “Read a file of this type”
 “Write a file for this type”

Reflection in Java

 Type is a Class<?>
 That's its type – class Class<?>

 obj.getClass() or Class.forName(“MyType”) or
Class<MyType>

 Class has an array of Fields (class Field)
 .getFields() / .getField(“name”)
 Field has a name and a value
 get() / set() – both take the object to get from

Reflection in Java

 Normal code:
 obj.x = obj.x + 1

 Reflection code:
 Class c = obj.getClass()

Field fx = c.getField(“x”);

fx.setInt(obj, fx.getInt(obj) + 1)

Reflection in Java

 Real power is with .getFields(), which gets all
public fields

 Increment ALL fields (assumed to be ints) by 1

Class c = obj.getClass();
for(Field fx : c.getFields()) {
 fx.setInt(obj, fx.getInt(obj) + 1)
}

 .getDeclaredFields() also gets private fields

Reflection in Java

Similarly, you could write out (or read in) all the
fields of a type via recursion!

Reflection in C

 Unlike Java, C does
not automatically
create these
structures for you

 We will need to create
our own.

Reflection in C

 Remember,
everything in C is just
collection of bytes

 struct MyStruct {
 int a;
 float f;
 char c1;
 char c2
 char d[4];
 double g;
};

Reflection in C

 Data for each field:
 Name of field
 Type of field

Reflection in C

 Data for each field:
 Name of field
 Type of field
 Storage of field

Reflection in C

 Data for each field:
 Name of field
 Type of field
 Storage of field
 Memory Offset of field

 offsetof will help here

offsetof(MyStruct, f) =

offsetof(MyStruct, g) =

Reflection in C

struct Type {
 const char* name;
 int size;
 vector<Field> fields;
};

struct Field {
 const char* name;
 Type* type;
 FieldStorage storage;
 int offset;
};

enum FieldStorage {
 STORAGE_DIRECT,
 STORAGE_DIRECT_PTR,
 STORAGE_VECTOR,
 STORAGE_VECTOR_PTR,
};

Reflection in C

// What would this struct look
// like?
struct ActorDef {
 const char* name;
 int xPos;
 int yPos;
 const char* fsmDef;
 HealthDef* def;
};

// Remember, C structs are laid
// out sequentially

Reflection in C

// What would this struct look
// like?
struct ActorDef {
 const char* name;
 int xPos;
 int yPos;
 const char* fsmDef;
 HealthDef* def;
};

// Remember, C structs are laid
// out sequentially
Type t = {
 “ActorDef”, 20,
 {
 {
 “name”, &StringType,
 STORAGE_DIRECT,
 0
 },
 {
 “xPos”, &IntType,
 STORAGE_DIRECT,
 4
 },

Reflection in C

// What would this struct look
// like?
struct ActorDef {
 const char* name;
 int xPos;
 int yPos;
 const char* fsmDef;
 HealthDef* def;
};

// Remember, C structs are laid
// out sequentially
Type t = {
 “ActorDef”, sizeof(ActorDef),
 {
 {
 “name”, &StringType,
 STORAGE_DIRECT,
 offsetof(ActorDef, name)
 },
 {
 “xPos”, &IntType,
 STORAGE_DIRECT,
 offsetof(ActorDef, xPos)
 },

Reflection in C

// Remember, C structs are laid
// out sequentially
Type t = {
 “ActorDef”, sizeof(ActorDef),
 {
 { “name”, &StringType, STORAGE_DIRECT,
 offsetof(ActorDef, name) },
 { “xPos”, &IntType, STORAGE_DIRECT,
 offsetof(ActorDef, xPos)},
 { “yPos”, &IntType, STORAGE_DIRECT,
 offsetof(ActorDef, yPos)},
 { “fsmDef”, &StringType, STORAGE_DIRECT,
 offsetof(ActorDef, fsmDef)},
 { “def”, &HealthDefType, STORAGE_POINTER,
 offsetof(ActorDef, def)}
 }
}

Reflection in C – Get / Set

 Given an offset, how do you get to the memory
location for a field:

 (char*)obj + field.offset

 To set an int to 1:
 (int)((char*)obj + field.offset) = 1

 To get the value of an int:
 (int)((char*)obj + field.offset)

Reflection in C – Get / Set

 Direct:
 (type*)((char*)obj + field.offset)

 Direct Pointer:
 (type**)((char*)obj + field.offset)

 Vector:
 (vector<type>*)((char*)obj + field.offset)

 Vector of Pointers:
 (vector<type*>*)((char*)obj + field.offset)

Reflection in C – Writing Files

 Write a single generic function that writes out
an object of a specified type in JSON:

void WriteType(FILE* f, Type* t, void* o)
{
 fprintf(f, "{\n");
 for(auto field : t.fields) {
 if(field.type == &IntType || field.type == &FloatType || ...) {
 WriteBuiltinField(f, t, field, o);
 } else if(field.storage == STORAGE_DIRECT) {
 fprintf(f, "\t\"%s\": ", field.name);
 WriteType(f, field.type, (char*)obj + field.offset);
 } else if(...) {
 }
 }
}

Reflection – Final Hookup

 Inspired by Windows!
 Each extension maps to a type

 .lvl → LevelDefType, .anim → AnimType

 Use opendir() / FindFirstFile() to enumerate all
files in your data directory

 Based on extension, load files into a hash table
 Key is field name “name”
 Value is full object

Reflection

Questions?

Reflection

Questions?

Final Project

 Due by the day of final (May 21st)
 But get it done earlier so you can study

 Make a game! A full game.
 You will be graded on three things:

 Stability – Few bugs, no crashes
 Completeness – Does it feel like a full game?
 Fun – The important part of any game

Final Project

 At the very least, every game should have the
following:

 Keyboard controls
 Title Screen & Game Over screen
 One level

 Because there are no tests, this is a significant
part of your grade. Don't procrastinate!

Final Project

 You can make the game solo or with one other
person.

 Suggested timeline for making the game:
 End of this week: Have a clear design
 May 4th: Have most code features done
 May 16th: Have the game done
 May 17–20: Study for other classes!

Final Project

For the remainder of this class, find a group and
figure out exactly what game you want to make.

Before you leave, tell me your team members.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

