

CS 134

Pathfinding

Game Engine Architecture
Chapter 14

Navigation Graph

 To do navigation, you
need a graph
representing the
navigable positions

 Put this intelligence
into the world!

 For a small game,
hand-generate this

Navigation Graph

// Describes all connections between nodes
ArrayList<GraphNode> graph;

// A specific node in the graph
class GraphNode {
 public NodeLink[] links;
 // Other data the AI cares about
}

// A connection from one node to another
class NodeLink
{
 // Index into graph
 public int destNode;
 // How far apart the nodes are
 public float cost;
 // How you move between nodes, e.g.
 // “WalkLeft”, “WalkRight”, “JumpLeft”, etc
 NodeLinkType type;
}

Navigation Graph

 Flat top down levels
don't need a separate
graph

 Tile grid already has
navigation and
collision

 Assume links go in
eight directions, so
long as not blocked

Navigation Graph

 Any level with
jumping will need to
know how to move

 GraphLinkType
 WalkLeft, WalkRight
 JumpLeft, JumpRight,

JumpUp
 HighJumpLeft,

HighJumpRight,
HighJumpUp

 etc.

Navigation Graph

 The key concept:
 An AI must be able to

figure out exactly
what moves to do to
follow a collection of
links.

 Every type of motion
possible should be in
the links.

Navigation – Dijkstra's Algorithm

 Visit all reachable
nodes from closest to
furthest

 For each visited
node, remember
where you came from

Navigation – Dijkstra's Algorithm

 Create a priority queue of all nodes
 Mark S as distance 0, all other nodes as infinity
 While the cheapest node has non-infinite

distance:
 If node is D, found, follow path back!
 Remove node from priority queue
 For each neighbor, update distance and prev node

Navigation – Dijkstra's Algorithm

Navigation – Dijkstra's Algorithm

 Performance Concerns:
 You end up visiting a lot of irrelevant nodes
 Worst case you have to visit every single node

 DO NOT CALL EVERY FRAME

Navigation – A* Algorithm

 Visit nodes in order of
“total estimated cost”
= time to get to node
+ estimated time to
get to destination

 For each node,
remember parent

Navigation – A* Algorithm

NOTE:
You will commonly find discussion of an “open”

and “closed” list in implementations of the A*
algorithm. This is an optimization and not strictly
necessary.

Navigation – A* Algorithm

 F = total expected cost (G + H)
 G = cost to get to current node
 H = estimated cost to get to node

 Visit nodes in F order
 (Dijsktra's Algorithm visits nodes purely in G order)

Navigation – A* Algorithm

 Create a priority queue of all nodes
 Calculate H for all nodes
 Mark S with G=0, all other nodes as infinity
 While the cheapest node has non-infinite

distance:
 If node is D, found, follow path back!
 Remove node from priority queue
 For each neighbor, update G and prev node

Navigation – A* Algorithm

 About those Open and Closed sets...
 They just makes finding the cheapest node faster

 The Open Set is all nodes that have non-infinite
F, so a G has been calculated

 The Closed Set is all nodes that have been
removed from the priority queue.

Navigation – A* Algorithm

Navigation

 Use A* when you know where to go, but you
don't know how to get there

 Use Dijkstra's when you don't know where to go
or how to get there

 And there will be a bonus algorithm next class!

Navigation – Game Loop

 Runtime performance of pathfinding is SPIKEY
 Very slow, but not usually needed
 May end up with multiple pathfinds needed in a

single frame.

 Do as much as you can each frame, but don't
go over some ms budget

 Check time after every pathfind, and if you've gone
over budget, stop pathfinding until the next frame

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

