

CS 134

Pathfinding

Game Engine Architecture
Chapter 14

Navigation Graph

 To do navigation, you
need a graph
representing the
navigable positions

 Put this intelligence
into the world!

 For a small game,
hand-generate this

Navigation Graph

// Describes all connections between nodes
ArrayList<GraphNode> graph;

// A specific node in the graph
class GraphNode {
 public NodeLink[] links;
 // Other data the AI cares about
}

// A connection from one node to another
class NodeLink
{
 // Index into graph
 public int destNode;
 // How far apart the nodes are
 public float cost;
 // How you move between nodes, e.g.
 // “WalkLeft”, “WalkRight”, “JumpLeft”, etc
 NodeLinkType type;
}

Navigation Graph

 Flat top down levels
don't need a separate
graph

 Tile grid already has
navigation and
collision

 Assume links go in
eight directions, so
long as not blocked

Navigation Graph

 Any level with
jumping will need to
know how to move

 GraphLinkType
 WalkLeft, WalkRight
 JumpLeft, JumpRight,

JumpUp
 HighJumpLeft,

HighJumpRight,
HighJumpUp

 etc.

Navigation Graph

 The key concept:
 An AI must be able to

figure out exactly
what moves to do to
follow a collection of
links.

 Every type of motion
possible should be in
the links.

Navigation – Dijkstra's Algorithm

 Visit all reachable
nodes from closest to
furthest

 For each visited
node, remember
where you came from

Navigation – Dijkstra's Algorithm

 Create a priority queue of all nodes
 Mark S as distance 0, all other nodes as infinity
 While the cheapest node has non-infinite

distance:
 If node is D, found, follow path back!
 Remove node from priority queue
 For each neighbor, update distance and prev node

Navigation – Dijkstra's Algorithm

Navigation – Dijkstra's Algorithm

 Performance Concerns:
 You end up visiting a lot of irrelevant nodes
 Worst case you have to visit every single node

 DO NOT CALL EVERY FRAME

Navigation – A* Algorithm

 Visit nodes in order of
“total estimated cost”
= time to get to node
+ estimated time to
get to destination

 For each node,
remember parent

Navigation – A* Algorithm

NOTE:
You will commonly find discussion of an “open”

and “closed” list in implementations of the A*
algorithm. This is an optimization and not strictly
necessary.

Navigation – A* Algorithm

 F = total expected cost (G + H)
 G = cost to get to current node
 H = estimated cost to get to node

 Visit nodes in F order
 (Dijsktra's Algorithm visits nodes purely in G order)

Navigation – A* Algorithm

 Create a priority queue of all nodes
 Calculate H for all nodes
 Mark S with G=0, all other nodes as infinity
 While the cheapest node has non-infinite

distance:
 If node is D, found, follow path back!
 Remove node from priority queue
 For each neighbor, update G and prev node

Navigation – A* Algorithm

 About those Open and Closed sets...
 They just makes finding the cheapest node faster

 The Open Set is all nodes that have non-infinite
F, so a G has been calculated

 The Closed Set is all nodes that have been
removed from the priority queue.

Navigation – A* Algorithm

Navigation

 Use A* when you know where to go, but you
don't know how to get there

 Use Dijkstra's when you don't know where to go
or how to get there

 And there will be a bonus algorithm next class!

Navigation – Game Loop

 Runtime performance of pathfinding is SPIKEY
 Very slow, but not usually needed
 May end up with multiple pathfinds needed in a

single frame.

 Do as much as you can each frame, but don't
go over some ms budget

 Check time after every pathfind, and if you've gone
over budget, stop pathfinding until the next frame

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

