

CS 134

Actor motion
Pixel perfect collision detection

Today in Video Games

Pixel Perfect Collision

 For some objects, it is
very hard to create a
collision shape.

 A “good” fit will still
have lots of holes.

 Lots of false positives
 Lots of false negatives

 Better if we could test
individual pixels

Actor Motion

 Basic motion from last class isn't enough for
many games

 In maze games, the player should be given some
give to going around corners

 In platformers, the player should be affected by
gravity

 One way walls are a common thing too

Actor Motion

 Maze edge motion:
 When moving, if you

are just barely
colliding, fix the
motion to a tile
boundary

 Here, pressing up will
still get Link into the
fortune teller's house

Actor Motion

 Add new state, set
during motion to
detect near misses

 When you release
pressing the direction,
clear the near miss
state.

 If in a near miss state,
move in the near miss
direction instead

Actor Motion

 Frame 1:
 Link would collides

with statue, set near
miss left, moves right

 Frame 2:
 Still in near miss

state, move right
 Frame 3:

 No longer in near
miss state, move up

Actor Motion

Super Mario World Example

Let's watch Super Mario World and
list out all the different behaviors

Pixel Perfect Collision

 Similar techniques
can be used to have
arbitrary shaped
platforms

 Or to create visual
collision boxes

Pixel Perfect Collision

 For this to work, you
need to have a 2D
grid of collision
information.

 Should generally line
up with the art

 Can get this from the
alpha channel of your
images!

Pixel Perfect Collision

boolean[][] collision = new boolean[width][height];

// Read in data.
if (bitCount == 32) {
 for (int it = 0; it < imageWidth * imageHeight; ++it) {
 bytes[it * BPP + 0] = file.readByte();
 bytes[it * BPP + 1] = file.readByte();
 bytes[it * BPP + 2] = file.readByte();
 bytes[it * BPP + 3] = file.readByte();

 // Also record the alpha being zero or non-zero
 boolean isNonZero = (bytes[it * BPP + 3] != 0);
 collision[it % width][it / width] = isNonZero;
 }
} else {

Pixel Perfect Collision

 New collision
function:

 For each pixel in
object 1:

 Find corresponding
pixel in object 2

 If both pixels are
set

 Collision
 No Collision

Corresponding Pixels

 Spaceship = 16x12
 Tornado = 14x16
 Intersection = 7x6

 Can be calculated
from AABB
intersection

 T_x = S_x – (16 – 7)
 T_y = S_y + (16 – 6)

Corresponding Pixels

 T_x = S_x – (16 – 7)
 T_y = S_y + (16 – 6)

 Y goes down!
 You SUBTRACT the

overlap amount if the
second sprite is
greater than the first
sprite.

 And ADD if the
second sprite is less.

Corresponding Pixels

 For each pixel in S,
calculate T:

 T_x = S_x – (16 – 7)
 T_y = S_y + (16 – 6)
 If T_x or T_y is inside

the tornado array AND
is collidable

 Collision
 No collision

Optimization

 This algorithm works, but is very very slow
 Pixels are tested even if objects don't overlap at all!

 Lots of pixels are tested that have no corresponding
pixels in other image

 Each individual pixel is tested as a separate
operation

Corresponding Pixels

 This algorithm works, but is very very slow
 Pixels are tested even if objects don't overlap at all!

 Do AABB test, then do pixel test
 Lots of pixels are tested that have no corresponding

pixels in other image
 Only test pixels in the AABB intersection

 Each individual pixel is tested as a separate
operation

 Use bitwise arithmetic to test many pixels in
parallel

Only Test Intersecting Pixels

 Arbitrarily choose one
object as A, one as B

 If A_left < B_left
 Start at A_right –

intersection_w
 Else

 Start at A_left
 Test intersection_w

times

 Same thing in Y

Bitwise Operators (Java)

 & “and” Both bits must be set
 | “or” Either bit must be set
 ^ “xor” Exactly one bit must be set
 ~ “not” 1 → 0, 0 → 1
 << “lshift” mnopqrst → nopqrst0
 >> “rshift” mnopqrst → mmnopqrs
 >>> “logical rshift” mnopqrst → 0mnopqrs

 In C, there is just >>, and its results are
implementation defined (usually to be the same as
in Java)

Bitwise Operators

 Use bitwise operators
to test up to 32 pixels
at once!

 Make bitmap literally
a map of bits

 00011111111000→07F8
 00111111111100→0FFC

 etc.
 Use bitwise AND,

LSHIFT on numbers

Revised Algorithm

 Choose left, right sprites
 For each line in intersection of leftsprite:

 (leftsprite << leftsprite_w – intersection_w) &
rightsprite

 Tests all pixels in one line at once!

 32x – 64x faster!
 Added one limitation: sprite can not be more

than 32 or 64 pixels wide

Pixel Perfect Limitations

 Pixel shape changes from frame to frame
 Only useful when interpenetration is okay

 No information about “how far” in you are
 Resolution must not care about that

 Best applications are where resolution is either
“destroy one object” or “hurt one object then
make it invincible”

 2D shooters, fighting games

Pixel Perfect Collisions

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

