

CS 134

Actor motion
Pixel perfect collision detection

Today in Video Games

Pixel Perfect Collision

 For some objects, it is
very hard to create a
collision shape.

 A “good” fit will still
have lots of holes.

 Lots of false positives
 Lots of false negatives

 Better if we could test
individual pixels

Actor Motion

 Basic motion from last class isn't enough for
many games

 In maze games, the player should be given some
give to going around corners

 In platformers, the player should be affected by
gravity

 One way walls are a common thing too

Actor Motion

 Maze edge motion:
 When moving, if you

are just barely
colliding, fix the
motion to a tile
boundary

 Here, pressing up will
still get Link into the
fortune teller's house

Actor Motion

 Add new state, set
during motion to
detect near misses

 When you release
pressing the direction,
clear the near miss
state.

 If in a near miss state,
move in the near miss
direction instead

Actor Motion

 Frame 1:
 Link would collides

with statue, set near
miss left, moves right

 Frame 2:
 Still in near miss

state, move right
 Frame 3:

 No longer in near
miss state, move up

Actor Motion

Super Mario World Example

Let's watch Super Mario World and
list out all the different behaviors

Pixel Perfect Collision

 Similar techniques
can be used to have
arbitrary shaped
platforms

 Or to create visual
collision boxes

Pixel Perfect Collision

 For this to work, you
need to have a 2D
grid of collision
information.

 Should generally line
up with the art

 Can get this from the
alpha channel of your
images!

Pixel Perfect Collision

boolean[][] collision = new boolean[width][height];

// Read in data.
if (bitCount == 32) {
 for (int it = 0; it < imageWidth * imageHeight; ++it) {
 bytes[it * BPP + 0] = file.readByte();
 bytes[it * BPP + 1] = file.readByte();
 bytes[it * BPP + 2] = file.readByte();
 bytes[it * BPP + 3] = file.readByte();

 // Also record the alpha being zero or non-zero
 boolean isNonZero = (bytes[it * BPP + 3] != 0);
 collision[it % width][it / width] = isNonZero;
 }
} else {

Pixel Perfect Collision

 New collision
function:

 For each pixel in
object 1:

 Find corresponding
pixel in object 2

 If both pixels are
set

 Collision
 No Collision

Corresponding Pixels

 Spaceship = 16x12
 Tornado = 14x16
 Intersection = 7x6

 Can be calculated
from AABB
intersection

 T_x = S_x – (16 – 7)
 T_y = S_y + (16 – 6)

Corresponding Pixels

 T_x = S_x – (16 – 7)
 T_y = S_y + (16 – 6)

 Y goes down!
 You SUBTRACT the

overlap amount if the
second sprite is
greater than the first
sprite.

 And ADD if the
second sprite is less.

Corresponding Pixels

 For each pixel in S,
calculate T:

 T_x = S_x – (16 – 7)
 T_y = S_y + (16 – 6)
 If T_x or T_y is inside

the tornado array AND
is collidable

 Collision
 No collision

Optimization

 This algorithm works, but is very very slow
 Pixels are tested even if objects don't overlap at all!

 Lots of pixels are tested that have no corresponding
pixels in other image

 Each individual pixel is tested as a separate
operation

Corresponding Pixels

 This algorithm works, but is very very slow
 Pixels are tested even if objects don't overlap at all!

 Do AABB test, then do pixel test
 Lots of pixels are tested that have no corresponding

pixels in other image
 Only test pixels in the AABB intersection

 Each individual pixel is tested as a separate
operation

 Use bitwise arithmetic to test many pixels in
parallel

Only Test Intersecting Pixels

 Arbitrarily choose one
object as A, one as B

 If A_left < B_left
 Start at A_right –

intersection_w
 Else

 Start at A_left
 Test intersection_w

times

 Same thing in Y

Bitwise Operators (Java)

 & “and” Both bits must be set
 | “or” Either bit must be set
 ^ “xor” Exactly one bit must be set
 ~ “not” 1 → 0, 0 → 1
 << “lshift” mnopqrst → nopqrst0
 >> “rshift” mnopqrst → mmnopqrs
 >>> “logical rshift” mnopqrst → 0mnopqrs

 In C, there is just >>, and its results are
implementation defined (usually to be the same as
in Java)

Bitwise Operators

 Use bitwise operators
to test up to 32 pixels
at once!

 Make bitmap literally
a map of bits

 00011111111000→07F8
 00111111111100→0FFC

 etc.
 Use bitwise AND,

LSHIFT on numbers

Revised Algorithm

 Choose left, right sprites
 For each line in intersection of leftsprite:

 (leftsprite << leftsprite_w – intersection_w) &
rightsprite

 Tests all pixels in one line at once!

 32x – 64x faster!
 Added one limitation: sprite can not be more

than 32 or 64 pixels wide

Pixel Perfect Limitations

 Pixel shape changes from frame to frame
 Only useful when interpenetration is okay

 No information about “how far” in you are
 Resolution must not care about that

 Best applications are where resolution is either
“destroy one object” or “hurt one object then
make it invincible”

 2D shooters, fighting games

Pixel Perfect Collisions

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

